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e What are appropriate paradigms for supporting fault-tolerant applications and how can they be
implemented efficiently?

¢ To what extcnt can fault tolerance be retrofitted into existing applications automatically?

e What lessons can be learned fror;n\ existing implementations of fault-tolerant and distributed
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1 Introduction

Optimistic rollback recovery methods can efficiently and transparently provide fault tolerance for applications
executing in a distributed system. With rollback recovery, information saved on stable storage during failure-
free execution allows certain states of each process to be recovered after a failure. Examnles of such methods
include those using message logging and checkpointing [11,7,3, 13,8, 12], and those using checkpointing
alone (10, 4, 2]. Optimistic methods in general allow unrecoverable states of one process to be seen by other
processes, and optimistically assume that these states will become recoverable before a failure occurs. This
allows the needed recovery information to be saved on stable storage asynchronously, reducing failure-free
overhead. However, if after a failure, these states are not recoverable, processes other than those that failed
may also be required to roll back in order to restore the system to a consistent state.

We have developed a theoretical model for reasoning about optimistic rollback recovery methods [8, 6],
and have shown that, in any system using optimistic rollback recovery, there always exists a unigue maximum
recoverable system state. We have also developed two algorithms for finding this maximum recoverable
system state. These results can be applied to systems in which all execution of processes between received
messages is assumed to be deterministic (e.g., message logging and checkpointing methods), and to systems in
which no such assumption is made (e.g., checkpointing methods). We have completed a full implementation
of optimistic message logging and checkpointing on a network on SUN workstations under the V-System, and
performance measurements from it demonstrate the efficiency of this method [5]. The overhead on individual
communication operations averaged only 10 percent, and the overhead on distributed application programs
ranged from a maximum of under 4 percent to much less than 1 percent.

This paper briefly describes the current status of our research. We also discuss some of its limitations
and present a new algorithm that addresses these limitations [9]. This algorithm dynamically supports both
deterministic and nondeterministic processes, and allows processes to individually switch between using
message logging and checkpointing or using checkpointing alone.

This work was supported in part by the National Science Foundation under grants CDA-8619893 and CCR-8716914, and by
the Office of Naval Research under contract ONR N00014-88-K-0140.
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2 Current Status

Our model concisely captures the dependencies that exist within the system that result from communication
between processes. The execution of each process is divided into a sequence of state intervals, such that in
terms of the rest of the model, all individual states of a process within any single state interval are equivalent
from the point of view of all other processes in the system. The differences between a deterministic and a
nondeterministic system are limited to the respective definitions of process state intervals. A state interval
is called stable if and only if some state of the process within that interval can be recreated from information
on stable storage after a failure.

The current dependencies of a process are represented by a dependency vector, and a system state is
represented by a dependency matriz. A system state is recoverable if and only if it is consistent and each
individual process state is stable. The process states that make up a system state need not all have existed at
the same time. A system state is said to have occurred during some execution of the system if all component
process states have each individually occurred. The system history relation defines a partial order on these
system states, such that one system state precedes another if and only if it must have occurred first.

With this model, we have proven some important properties of any system using rollback recovery. First,
the set of system states that have occurred during any single execution of a system, ordered by the system
history relation. forms 2 lattice, called the system history iattice, with the sets of consistent and recoversole
system states as sublattices. During execution, there is thus always a unigue maximum recoverable system
state, which never decreases. We have also proven sufficient conditions for committing output from the
system to the “outside world,” and for removing recovery information from stable storage when no longer
needed.

We have developed two algorithms for determining this maximum recoverable system state, and have
used the model to prove their correctness. The first algorithm finds the maximum recoverable system state
“from scratch” each time it is invoked, whereas the second algorithm is incremental, beginning its search
with the previously known maximum and utilizing information saved from its previous executions to shorten
its search. We have completed an implementation of optimistic message logging and checkpointing using this
first algorithm, running under the V-System. Our performance measurements from this implementation, on
a network of SUN-3/60 workstations, can be summarized as follows:

¢ The overhead on individual V-System communication operations averaged only 10 percent, ranging
from about 18 percent to 2 percent, for different operations.

¢ During a checkpoint, the execution of the process is suspended typically for only a few tens of millisec-
onds, since most data is written to the checkpoint before suspending the process. The total time to
complete the checkpoint, though, is dominated by the time required to write the modified pages of the
user address space to the checkpoint, and is is about 3 seconds per megabyte written.

o The total overhead experienced by distributed application programs is affected most by the amount
of communication performed during execution. We measured the performance of programs for solving
the n-queens problem, the traveling salesman problem, and Gaussian elimination with partial pivoting.
The total overhead ranged from a maximum of under 4 percent to much less than 1 percent.

¢ During failure recovery, the running time of the algorithm is negligible relative to the time required
to restore the processes from their checkpoints and to replay the logged messages to the recovering
processes.

To our knowledge, this is the only existing complete implementation of fault-tolerance using optimistic
message logging and checkpointing.

3 Limitations and Future Directions

The lack of support for nondeterministic process execution is a significant limitation to current methods
using message logging and checkpointing. Nondeterministic execution can arise, for example, through asyn-




chronous scheduling of multiple threads accessing shared memory. To recover the state of a process using
message logging and checkpointing, the sequence of messages originally received by the process after its check-
point are replayed to it. The process is assumed to reexecute deterministically based on these messages, and
to reach the same state as it had after receiving them before the failure. If process execution can be nonde-
terministic, recovery will not be successful. This limitation does not affect methods using only checkpointing,
since only process states recorded in checkpoints are used for recovery.

Another limitation of current message logging and checkpointing methods, which is shared by methods
using only checkpointing, is the difficulty of committing output from the system to the “outside world.”
Output must be dclayed until it is guaranteed that the sending process will never roll back beyond the
state from which the output was sent. Essentially, this requires that all of that state’s causal antecedent
states must be able to be recovered after a failure. Without coordination between output and the message
logging or checkpointing of individual processes, the delays in committing output may be substantial. These
delays can be reduced by logging or checkpointing more frequently, but this may significantly increase the
failure-free overhead of the system.

These observations lead us to a new algorithm {9] in which recording the needed recovery information on
stable storage, and determining the current maximum recoverable system state, are both driven by the need
to commit output from the system to the outside world. This algorithm allows all output to the outside
world to be committed quickly after being sent, while reducing the overhead required to determine when such
output can be committed. The algorithm further reduces fault-tolerance overhead by avoiding the logging of
messages not needed to allow pending output to be committed. Each process commits its own state intervals
as needed, and requires the cooperation of the minimum number of other processes.

The issue of nondeterministic execution is addressed by allowing individual processes to dynamically
switch between using message logging and checkpointing or using checkpointing alone. We assume that
processes can detect when their execution is nondeterministic, such as through a trap caused by the memory
protection hardware. Processes can use message logging during deterministic execution, to avoid recording a
new checkpoint each time they or other processes that depend on them need to commit output to the outside
world. During nondeterministic execution, the process converts to using only checkpointing. This feature
can also be used by individual processes to reduce the overhead of message logging. Processes can decide
not to log received messages during arbitrary periods of their own execution. This saves the overhead of
copying each received messages to a buffer in volatile memory, and the overhead of later writing this buffer
to stable storage. However, processes must then record a new checkpoint when they or other processes that
depend on them need to commit output to the outside world.

We contend that there are significant advantages in allowing each process a dynamic choice between
message logging and checkpointing. In particular, if one or more processes in the computation are nonde-
terministic, they would always use checkpointing, while other processes may choose to use message logging.
Furthermore, if a process is known to be deterministic most of the time, but occasionally experiences de-
tectable nondeterministic events, it may choose to use message logging during deterministic periods, but
turn off message logging after it has experienced a nondeterministic event. After a subsequent checkpoint,
message logging may be turned on again until another nondeterministic event oceurs. Deterministic processes
can choose between message logging and checkpointing depending on which they perceive to be the least
expensive at any particular time. If a process receives a large number of messages during some period of
time, it may choose to record a new checkpoint, thereby eliminating the need for writing these messages to
stable storage. If, on the other hand, a process receives few messages, but has a large and rapidly changing
address space, it may instead decide tc log these fcw messages and postpone taking an expensive checkpoint,
until it becomes necessary to do so for limiting the recovery time. This algorithm can be viewed as unifying
the spectrum of methods between checkpointing alone and message logging and checkpointing.

We are also examining methods for exploiting limited application-specific knowledge to reduce the over-
head of message logging, while still being transparent to the application. Our current approach to this
is in the envirorment of a distributed shared memory system. In such a system, all messages between
processes are generated by the shared memory system. Fault tolerance could be provided by simply log-
ging these messages, but we believe it would be far more efficient to take advantage of tlie knowledge that




these messages are sent to emulate a specific shared data structure. In-a separate project, we are currently
developing a distributed shared memory system using memory coherence mechanisms that are specific to
the particular access pattern of each object [1]. As a simple example, if the shared memory system knows
that a particular object is “read-only,” accesses to it need not be logged. Wu and Fuchs [14) have recently
proposed a pessimistic method for providing fault tolerance in a distributed shared virtual memory system,
which in general requires processes to checkpoint on each interaction. We are interested in pursuing a more
optimistic approach, reducing the number of checkpoints without reintroducing overhead elsewhere.
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